什么是无监督学习,无监督学习是什么
什么是无监督学习?什么是无监督学习?根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习。无监督学习也就是我们事先没有任何训练数据样本,需要直接对数据进行建模。常用的无监督学习算法主要有主成分分析方法PCA等,等距映射方法、局部线性嵌入方法、拉普拉斯特征映射方法、那么,什么是无监督学习?一起来了解一下吧。
什么是无监督学习
监督学习与无监督学习的区别:
1、原理不同
监督学习是指利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程。无监督学习指根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题的过程。
2、算法不同
监督学习的算法是通过分析已知类别的训练数据产生的。无监督学习的算法主要有主成分分析方法、等距映射方法、局部线性嵌入方法、拉普拉斯特征映射方法、黑塞局部线性嵌入方法和局部切空间排列方法等。
3、适用条件不同
监督学习适用于样本数据已知的情况。非监督学习适用于无类别信息的情况。
以上回答参考:百度百科-监督学习、百度百科-无监督学习
什么是有监督学习和无监督学习
在判断是有监督学习还是在无监督学习上,我们可以具体是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习。
什么是学习(learning)?
一个成语就可概括:举一反三。机器学习的思路有点类似高考一套套做模拟试题,从而熟悉各种题型,能够面对陌生的问题时算出答案。
简而言之,机器学习就是看能不能利用一些训练数据(已经做过的题),使机器能够利用它们(解题方法)分析未知数据(高考题目),而这种根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习。
常用的无监督学习算法主要有三种:聚类、离散点检测和降维,包括主成分分析方法PCA等,等距映射方法、局部线性嵌入方法、拉普拉斯特征映射方法、黑塞局部线性嵌入方法和局部切空间排列方法等。
从原理上来说,PCA等数据降维算法同样适用于深度学习,但是这些数据降维方法复杂度较高,所以现在深度学习中采用的无监督学习方法通常采用较为简单的算法和直观的评价标准。比如无监督学习中最常用且典型方法聚类。
在无监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据。
什么是无监督学习
机器学习任务根据训练样本是否有label,可以分为监督学习和无监督学习。